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Abstract.–For fish populations with an 
annual breeding cycle, a biological ref-
erence point based on the Leslie matrix 
is presented and compared with percent 
maximum spawning potential (%MSP) 
and Fmed reference points. For determin-
istic population projections, the reference 
point is defined as the level of fishing 
mortality (Fst) that results in a Leslie 
matrix with a dominant eigenvalue (i.e. 
finite rate of increase or λ) of 1.0. It is 
shown that for the same input data, Fst 
is similar to a reference point based on 
a %MSP approach. For populations that 
are growing or declining, however, popu-
lations with the same λ but with different 
age-specific selectivities have different 
levels of %MSP. Previous applications 
of this reference point are extended to 
include situations where recruitment is 
a stochastic process. In stochastic pro-
jections, Fst is defined as the level of 
fishing mortality that results in an aver-
age finite rate of increase of 1.0. In an 
example with Georges Bank haddock, a 
deterministic analysis with mean birth 
and death rates resulted in an estimate 
of Fst of 0.52. The same estimate of Fst 
was obtained in a stochastic projection in 
which the growth rate of the mean popu-
lation size was used. Stochastic projec-
tions using the mean of the finite rates 
of increase resulted in a lower estimate 
of Fst (0.45). When the value of recruits 
per unit of spawning stock biomass used 
in the %MSP analysis was calculated as 
Σrecruits/Σspawning stock biomass, the 
estimated reference point was the same 
as the stochastic projection. On the basis 
of these results, I recommend calculating 
the reference point based on a stochas-
tic projection for which the mean of the 
simulated growth rates is used. A refer-
ence point based on a %MSP approach 
using the Σrecruits/Σspawning stock bio-
mass results in an equivalent estimate of 
the reference point but does not convey 
important information on the expected 
population growth rate at higher or lower 
rates of fishing mortality.

Advice to fishery managers on desir-
able harvest or exploitation rates is 
ideally based on full knowledge of 
fishery dynamics, including informa-
tion on the fish population’s stock-re-
cruitment relationship, growth and 
maturation schedule, and bioeco-
nomic considerations. With a lack 
of such complete information, guid-
ance to fishery managers often takes 
the form of providing an estimate 
of fishing mortality and a compari-
son of that rate to one or more bio-
logical reference points (e.g. Clark, 
1991; Anonymous1). Numerous bio-
logical reference points exist, each 
concerned with a somewhat differ-
ent aspect of population response to 
harvesting. One class of reference 
points focuses on yield per recruit as 
a function of fishing mortality. The 
general goal of this class of reference 
points is to optimize harvest rates 
in relation to natural mortality and 
growth (i.e. prevent growth overfish-
ing; Beverton and Holt, 1957). For 
example, Fmax is the fishing mortal-
ity rate at which yield per recruit 
is maximized (Beverton and Holt, 
1957). A related reference point is 
F0.1, which is the fishing mortality 
rate where the slope of the yield per 
recruit curve is 10% of the slope at 
the origin (Gulland and Boerema, 
1973). Fishing at Fmax or F0.1 re-
sults in maximal or nearly maximal 
yield from a fishery when recruit-
ment is independent of stock size. 
A limitation of this class of refer-
ence points, however, is that reduc-
tions in recruitment are often evi-

dent when stocks are depleted to low 
levels (e.g. Overholtz et al., 1986). 
Thus, management advice based on 
Fmax or F0.1 can result in declines 
in abundance through recruitment 
overfishing (Sissenwine and Shep-
herd, 1987), ultimately resulting in 
reduced total yield from a stock.

As a counterpart to reference 
points based on yield per recruit, sev-
eral reference points based on stock-
recruitment considerations have 
been developed. The goal of these 
reference points is to provide a mea-
sure of fishing mortality that will 
likely avoid recruitment overfishing. 
An example of this type of reference 
point is Fmed which is based on the 
median of the observed levels of re-
cruits produced per unit of spawn-
ing stock biomass (R/SSB) (Sissen-
wine and Shepherd, 1987). The ra-
tionale behind this reference point is 
that fish abundance is maintained 
when the spawning stock biomass 
produced by a cohort over its lifetime 
is equal to the spawning stock bio-
mass of the parent population when 
the cohort was spawned. Related to 
Fmed is a set of reference points based 
on the spawning stock biomass per 
recruit (SSB/R) in relation to the 
SSB/R that would be produced if the 

 1 Anonymous. 1996. Report of the 20th 
Northeast Regional Stock Assessment Work-
shop (20th SAW): SAW Public Review Work-
shop. Northeast Fisheries Science Center 
Reference Document 95-19. National Oce-
anic and Atmospheric Administration, Na-
tional Marine Fisheries Service, Woods Hole, 
MA, 52 p.
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stock were not fished (Gabriel et al., 1989; Clark, 
1991). These reference points are termed percent max-
imum spawning potential (%MSP) or spawning per 
recruit (SPR) reference points. As an example, Gabriel 
et al. (1989) found that fishing at Fmed for Georges 
Bank haddock results in a SSB/R ratio of about 30% 
(F30%) of the SSB/R that would be produced if the stock 
were not fished.

There are several limitations to this group of refer-
ence points. First, the population-level effect of fishing 
above or below a given reference point is not immedi-
ately obvious. For example, if fishing at F30% results 
in a stable population, the rate of population decline 
when fishing mortality results in a 20% MSP is not 
clear. Secondly, although the use of the median SSB/R 
is an attempt to determine the SSB/R ratio with a 
robust estimator, the effects of variability in recruit-
ment have not been closely examined in the estima-
tion process. There is also an implication that two fish-
ing mortality patterns (i.e. combination of fishing in-
tensity and age at entry into the fishery) that produce 
the same SSB/R will result in equivalent impacts on 
the population. To my knowledge, this implication has 
not been investigated. Finally, these reference points 
treat the R/SSB ratio as being independent of stock 
size. Although the stock-recruitment relationship for 
many stocks is so weak and highly variable that this 
is a reasonable approach (Clark, 1991), this assump-
tion should be examined on a case-by-case basis.

The goal of this paper is to explore a method for 
computing a reference point based on stock-recruit-
ment data that overcomes some of the limitations of 
Fmed and related reference points concerned with re-
cruitment overfishing. In particular, this method al-
lows for 1) a direct determination of the population-
level impact of fishing above or below the reference 
point and, 2) incorporation of information on recruit-
ment variability into the estimated reference point. 
This method does not, however, take into account any 
curvature in the stock-recruitment relationship (i.e. 
this method assumes that recruitment is proportional 
to spawning stock biomass). Although this assump-
tion is not always met, the reduction in abundance 
that occurs for most exploited fish stocks results in 
a reduced magnitude of density-dependent effects on 
recruitment. Thus, the use of this reference point is 
likely to be reasonable for fish stocks that have al-
ready been exploited (Francis, 1997). 

Methods

The proposed method is founded on an eigenvalue 
analysis of Leslie matrices representing the popula-
tion’s dynamics under exploitation. As such, the model 

is specifically intended for use for fish with a single 
breeding season per year. The underlying model is 
based on one developed by Quinn and Szarzi (1993), 
which led to determination of the fishing mortality 
(Fst) that resulted in a stationary population in a Les-
lie matrix setting. Their results are extended by exam-
ining the effects of recruitment variability on the ref-
erence point and the relationship between this method 
and %MSP methods. This model is conceptually sim-
ilar to those used for environmental impact assess-
ment of power plants (e.g. DeAngelis et al., 1977; Co-
hen et al., 1983; Goodyear and Christensen, 1984) but 
differs in that it focuses on sustainable harvest rates 
across several age classes, whereas environmental im-
pact assessment models typically focus on mortality 
of early life stages. Related methods have also been 
presented by Getz and Haight (1989). Their methods, 
however, are not explicitly framed toward providing a 
reference point for a fishery. Further, their methods 
are based on catch (in numbers or weight) whereas 
my methods are based on fishing mortality rates.

Developing a Leslie matrix representation of 
harvesting: deterministic case

Consider initially a population with no harvest, and 
where abundance estimates are available on an an-
nual basis at the time of breeding. If we assume that 
the vital rates (i.e. age-specific reproduction and sur-
vival) are constant, the dynamics of the population 
can be represented by a Leslie matrix Lu; (see Table 1 
for a list of symbols and their definitions):

  E(0) E(1) E(2) . . . E(s) 
Lu=  S(0) 0 0 . . . 0 
  0 S(1) 0 . . . 0 
  0 0 S(2) . . . 0 
  . . . . . . . . . . . . . . . 
  0 0 0 S(s–1) 0 

where E(i) is age-specific fecundity, S(i) is the annual 
survival rate from age i to i+1 and s is the maximum 
age. With this projection matrix, the population at 
time t+1 can be determine from the population at time 
t by the equation:

Nt+1 = Lu Nt .

Note that estimates of natural mortality rate are also 
necessary to compute the previously mentioned ref-
erence points and are typically available for species 
where quantitative stock assessments are performed. 
Also note that although age-specific fecundity is not 
always measured in fish stock assessments, spawn-
ing stock biomass is commonly used as a surrogate 
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(see Rothschild and Fogarty (1989) for cautions on 
this practice, however). Because data on spawning 
stock biomass are more commonly presented in fish-
ery assessments than data on fecundity, I will pres-
ent the model using age-specific fecundity equivalents 
(i.e. spawning biomass of individual fish) rather than 
fecundity. In this representation, the survival rate of 
age-0 fish is expressed as recruits per unit of spawn-
ing stock biomass (R/SSB) rather than as actual sur-
vival rate from egg to age 1, and SSB is used in place 
of egg production. It is easily shown that the use of 
R/SSB and SSB in the Leslie matrix is algebraically 
equivalent to using fecundity and survival from egg to 
age 1.

Given the mapping of the vital rates [E(i), S(i)] of 
the unexploited population into a Leslie matrix, it is 
straightforward to represent the dynamics of the pop-
ulation under exploitation. Observe that for the un-
exploited population S(i)=e–M(i), where M(i) is the in-
stantaneous natural mortality rate. For an exploited 

population, S(i)=e–(M(i)+F(i)) where F(i) is the age-spe-
cific instantaneous rate of fishing mortality. The Les-
lie matrix for the population under exploitation (Le) is 
thus formed in exactly the same manner as for the un-
exploited population except that annual survival rates 
are decreased through fishing mortality. 

It is important to emphasize that in this analysis, fe-
cundity and natural mortality (including age-0 survival 
or R/SSB) are assumed to be constant. As such, the de-
termination of a reference point based on an analysis of 
Le is valid over the range of stock sizes for which these 
age-specific fecundity and mortality rates apply. 

Methods of analyzing the Leslie matrix are well es-
tablished (e.g. Keyfitz, 1977; Caswell, 1989). Proper-
ties of the Leslie matrix under certain regularity con-
ditions include the following:

1 The Leslie matrix has at least one positive root 
(eigenvalue);

2 The largest of these roots (the dominant eigenvalue 
or λ) determines the population growth rate, except 
in cases where the population is inherently cyclical 
and the largest roots are of equal magnitude; 

3 If λ > 1 the population will increase;
 If λ = 1 the population will remain steady;
 If λ < 1 the population will decrease.

(Pielou, 1974; Caswell, 1989; Getz and Haight, 1989). 
Of particular importance to this reference point is the 
dominant eigenvalue which, in the deterministic case, 
is sufficient to determine the long-term trend in popu-
lation abundance (Keyfitz, 1977; Cohen et al., 1983). 
Given these properties, the following assertion for the 
deterministic case can be made:

1 A population under exploitation can maintain it-
self at or above a given level of abundance only if 
the dominant eigenvalue of Le (i.e. λe) ≥ 1.

From this assertion arises the proposed reference 
point: Fst (for F steady, after Quinn and Szarzi, 1993) 
is a fishing mortality pattern where λe = 1. Note that 
Fst is actually a vector comprising two components: an 
overall level of fishing mortality (often termed fully re-
cruited F) and the relative fishing mortality between 
age classes (often referred to as the partial recruit-
ment vector or selection pattern), and that Fi = (fully 
recruited F) × (selection on age i). By convention, I 
will use the fully recruited F as an index of the over-
all level of fishing mortality, but stress that specifi-
cation of the partial recruitment function is also nec-
essary to determine the impact of harvesting on a 
population. Also note that there is an infinite set of 
fishing mortality patterns for which the condition that 
λe=1 is satisfied. For a given partial recruitment func-

Table 1
Symbols used and their definitions.

 Definition

E(i) Fecundity at age i.

F(i) Instantaneous fishing mortality rate from age i to 
i+1.

F Fishing mortality rate on fully recruited age 
class(es).

Fst Sustainable fishing mortality rate on fully recruited 
age class(es).

Le Leslie matrix representing exploited population.

Lu Leslie matrix representing unexploited population.

λe  Dominant eigenvalue of Le.

λu  Dominant eigenvalue of Lu.

M(i) Instantaneous natural mortality rate from age i to 
i+1.

N(i) Number at age i.

Nt Total population size at time t.

i Age index.

PM(i) Proportion of females mature at age i.

R/SSB Recruits per unit of spawning stock biomass.

SSB Spawning stock biomass.

SSB/R Spawning stock biomass per recruit

s Maximum age.

S(i) Annual survival rate from age i to i+1.

tc Age at recruitment when vulnerability to the fish-
ery is knife-edge.

W(i) Weight at age i.

X(i) Fecundity equivalents for fish of age i.
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tion, however, only one level of fishing will satisfy 
this condition. Note that the converse is not true; for 
a given level of fully recruited fishing mortality, nu-
merous partial recruitment functions can satisfy the 
above condition. Because of the nature of these rela-
tionships, I will focus on those situations where the 
partial recruitment function is specified and solve for 
the level of fishing that is sustainable. Once the selec-
tion pattern and fully recruited fishing mortality are 
set, λe can be found by the power method as described 
by Johnson and Riess (1981).

Example of maintenance fishing mortality: 
deterministic case

Data from Georges Bank haddock (Melanogrammus 
aeglefinus) are used to illustrate the computation and 
application of this reference point. For ease of discus-
sion, I first present general results assuming knife-
edge recruitment to the fishery at age tc with full vul-
nerability thereafter. 

Age-specific fecundity equivalents (X(i); Table 2) 
were computed as

X(i) = W(i) × PM(i), 

where W(i) = mean weight (kg) at age i; and
 PM(i) = proportion of females mature at age i.

and spawning stock biomass was computed as the 
product of fecundity equivalents and number of fish 
at age. Mean weight at age (W(i)) and proportion of fe-
males mature (PM(i)) reported by O’Brien and Brown2 
were used in this analysis. The instantaneous natural 
mortality rate (M(i)) of haddock age 1 and older is 0.2 
(Clark et al., 1982), and a maximum age of 15 was 
used following Gabriel et al. (1989). 

I computed annual R/SSB (Table 3) from the ratio 
of number of female fish at age 1 to their parental 
female spawning stock biomass (Clark et al., 1982; 
O’Brien and Brown2; Hayes and Buxton3) for the pe-
riod 1931–94. For the entire data series, R/SSB aver-
aged 0.5902. As noted by Gabriel et al. (1989), how-
ever, the R/SSB ratio (reflecting age-0 survival) ap-
pears to have declined following the collapse of the 
Georges Bank haddock stock during the early 1960s. 

At present the causes of the decline in the R/SSB ra-
tio are not known. Several hypotheses explaining the 
observed decline in R/SSB have been put forth, in-
cluding depensatory mortality on age-0 haddock (Col-
lie and Spencer, 1993), changes in oceanographic con-
ditions (Myers and Pepin, 1994), and increased pre-
dation or competition with elasmobranchs (Collie and 
Spencer, 1993). Although the cause is not known, a cru-
cial consideration is the choice of an appropriate time 
period where R/SSB is representative of current pop-
ulation abundance and biomass and current environ-
mental conditions. 

One strategy to obtain a mean R/SSB value repre-
sentative of “current” conditions is to average R/SSB 
from the most recent data point back several years. 
The philosophy behind this strategy is to smooth an-
nual variations in R/SSB by averaging over a suffi-
ciently long time period. The problem, however, is to 
define a time period sufficiently long to achieve ad-
equate precision without introducing excessive bias. 
Averages over short time periods suffer from low pre-
cision and can vary considerably because of annual 
variation in R/SSB. If averages are taken over a time 
period spanning a wide range of population levels or 

Table 2
Age-specific characteristics of Georges Bank haddock. Fecun-
dity equivalents (i.e. spawning biomass per individual) are 
denoted as X, instantaneous natural mortality rate as M, 
and partial recruitment as PR. The proportion mature and 
mean weights at age are from O’Brien and Brown (see Foot-
note 2 in the main text).

 Proportion Mean weight
Age mature  (kg) X M PR

0 0.00 — 0.000 — 0.00

1 0.08 0.486 0.039 0.2 0.00

2 0.46 0.676 0.311 0.2 0.07

3 0.88 1.197 1.053 0.2 0.65

4 1.00 1.621 1.621 0.2 1.00

5 1.00 2.021 2.021 0.2 1.00

6 1.00 2.424 2.424 0.2 1.00

7 1.00 2.780 2.780 0.2 1.00

8 1.00 3.1921 3.192 0.2 1.00

9 1.00 3.5481 3.548 0.2 1.00

10 1.00 3.9241 3.924 0.2 1.00

11 1.00 4.2971 4.297 0.2 1.00

12 1.00 4.6671 4.667 0.2 1.00

13 1.00 5.0341 5.034 0.2 1.00

14 1.00 5.3981 5.398 0.2 1.00

15 1.00 5.7581 5.758 0.2 1.00

1 Predicted from von Bertalanffy growth equation fitted to observed 
data for ages 1 to 7.

2 O’Brien, L., and R. W. Brown. 1996. Assessment of the 
Georges Bank haddock stock for 1994. Northeast Fisheries 
Science Center Reference Document 95-13. National Marine 
Fisheries Service, Northeast Fisheries Science Center, Woods 
Hole, MA. 107 p.

3 Hayes, D. B., and N. G. Buxton. 1991. Assessment of the 
Georges Bank haddock stock. Papers of the Northeast Regional 
Stock Assessment Workshop, Research Document SAW13/1, 
126 p.
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spanning a trend in environmental conditions, the 
estimate of future R/SSB may be biased. For this 
stock, mean R/SSB for periods of 5 to 15 years appear 
relatively stable. Over longer periods of time, mean 
R/SSB shows an upward trend, punctuated by sharp 
increases corresponding to the 1963 and 1975 year 
classes when R/SSB ratios were much higher than in 
any other years. Because of the trends observed over 
longer periods of time, I chose the time period from 
1976 to 1994 as representative of “current” conditions 
for R/SSB, or equivalently, age-0 survival. For this 
time period, R/SSB averaged 0.4092, and had a me-
dian of 0.1493.

Based on the mean R/SSB for 1976 to 1994, the had-
dock population would be expected to grow at a rate 

of 18.0% per year with no exploitation (i.e. λu=1.180). 
For knife-edge recruitment, I computed λe for fishing 
mortality rates ranging from 0 to 2.0 (Fig. 1) and for 
ages at entry (tc) from 1 to 5 years and for the commer-
cial fishery age selectivity observed in 1993–94 (Table 
2). Additionally, I determined Fst and %MSP (following 
the methods of Gabriel et al., 1989) for each age at entry 
(Table 4). It is apparent from this analysis that as age 
at entry is delayed, the impact of fishing on the popula-
tion is decreased (Fig. 1). Thus, higher fishing mortality 
rates can be sustained when recruitment to the fishery 
is delayed (Table 4). In fact, when the age at entry is 5 or 
greater, any level of fishing mortality is sustainable. 

These conclusions are not new; analysis of SSB/R 
yields similar insights into the response of populations 

Table 3
Stock-recruitment data for Georges Bank haddock, 1931 to 1990.  Data for 1931 to 1962 Hayes and Buxton (see Footnote 3 in the main 
text), and from 1963 to 1994 from O’Brien and Brown (see Footnote 2 in the main text).

 Spawning stock Number of age-1   Spawning stock Number of age-1
 biomass (t)  females produced   biomass (t)  females produced
Year  females only (millions) R/SSB Year females only (millions) R/SSB

1931 75,767 22.793 0.3008 
1932 61,586 26.052 0.4230
1933 52,643 30.239 0.5744
1934 47,187 29.436 0.6238
1935 52,104 29.323 0.5628
1936 54,967 53.173 0.9674
1937 52,872 39.626 0.7495
1938 60,434 29.875 0.4943
1939 70,067 55.903 0.7979
1940 67,418 57.052 0.8462
1941 76,187 30.731 0.4034
1942 77,248 11.783 0.1525
1943 75,511 32.411 0.4292
1944 68,957 20.806 0.3017
1945 62,785 46.548 0.7414
1946 65,712 30.486 0.4639
1947 57,269 16.676 0.2912
1948 55,659 62.918 1.1304
1949 45,791 29.447 0.6431
1950 55,919 52.810 0.9444
1951 54,039 21.795 0.4033
1952 55,497 66.748 1.2027
1953 54,772 26.276 0.4797
1954 65,764 46.429 0.7060
1955 68,949 30.534 0.4428
1956 78,979 31.155 0.3945
1957 75,364 29.630 0.3932
1958 75,995 63.270 0.8326
1959 77,394 61.685 0.7970
1960 93,667 26.950 0.2877
1961 113,366 19.368 0.1708
1962 109,001 95.348 0.8747

1963 82,128 235.939 2.8728
1964 64,278 16.577 0.2579
1965 72,512 2.013 0.0278
1966 90,260 6.426 0.0712
1967 56,051 0.211 0.0038
1968 37,546 0.494 0.0132
1969 25,589 2.330 0.0911
1970 19,255 0.184  
1972 13,456 9.707 0.7214
1973 6,135 5.270 0.8590
1974 10,906 3.827 0.3509
1975 9,190 51.616 5.6165
1976 11,031 6.891 0.6247
1977 20,717 3.029 0.1462
1978 34,427 41.941 1.2183
1979 33,841 5.052 0.1493
1980 31,703 3.600 0.1136
1981 27,757 1.230 0.0443
1982 22,682 1.519 0.0670
1983 17,531 8.548 0.4876
1984 12,583 0.865 0.0687
1985 10,313 7.233 0.7013
1986 10,186 0.882 0.0866
1987 9,540 8.024 0.8411
1988 8,781 0.580 0.0661
1989 9,061 1.244 0.1373
1990 9,762 0.991 0.1015
1991 8,682 4.125 0.4751
1992 6,231 7.219 1.1586
1993 5,001 3.754 0.7507
1994 7,324 3.938 0.5377
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to harvesting. The analysis of the Leslie 
matrix offers information not available 
in the analysis of SSB/R, however. First, 
the consequences of overfishing or “un-
derfishing” are clearly evident from the 
graph of λe against fishing mortality rate. 
For example, for an age at entry of 3 
years, Fst is 0.465. If the fishing mortal-
ity rate was limited to 0.20 (for exam-
ple), the population would be expected 
to increase at a rate of about 8.8% per 
year (Fig. 1). Likewise if fishing mortal-
ity was increased to 1.0, the population 
would be expected to decline at a rate of 
about 10.3% per year (Fig. 1).

When %MSP is plotted against lambda 
resulting from various levels of fishing 
mortality and ages at entry into the fish-
ery, it is apparent that equal %MSP val-
ues are obtained for the same lambda 
only at two points along each of the 
curves. The first point is for the unfished 
population when lambda is at a maxi-
mum and there is 100% MSP. The second point where 
all %MSP values are equal is when lambda is equal to 
1.00 (Fig. 2). These results demonstrate the assertion 
that fishing mortality rates that result in equal %MSP 
values do not necessarily result in the same population 
dynamics (i.e. the same rate of increase or decrease). 
The reason for this disparity is that in a growing or 
declining population, the timing of reproduction dur-
ing the lifetime is important, as well as the total life-
time egg production. For example, when a population is 
growing, earlier realization of lifetime spawning poten-
tial contributes more to population growth than later 
reproduction. This relationship is evident when the for-
mula for lifetime spawning stock biomass (on which 
%MSP is based) is compared to the formula for repro-
ductive value, upon which the rate of population change 
depends. Observe that lifetime spawning stock biomass 
per newborn individual is (Gabriel et al., 1989)

SSB/N0  = S(0)W(1)PM(1) + S(0)S(1)W(2)PM(2) + 
 S(0)S(1)S(2)W(3)PM(3) + ... .

This formula is equivalent to that for the “net repro-
ductive rate” (Caswell, 1989) which is the expected 
number of offspring produced by a newborn over its 
lifetime. With the above notation, the reproductive 
value (Caswell, 1989) of an age-1 individual can be ex-
pressed as

 Reproductive S(0)S(1)W(2)PM(2)λ–1 +
 value = S(0)S(1)S(2)W(3)PM(3)λ–2 +
  S(0)S(1)S(2)S(3)W(4)PM(4)λ–3 + ... .

These formulae are similar except for the addition of 
the term λ–i, where i is the age index. Classical demo-
graphic theory shows that the growth rate of a popu-
lation is dependent on the reproductive value rather 
than on the net reproductive rate (Caswell, 1989). 
These two quantities are clearly related, however.

Currently, Georges Bank haddock become vulner-
able to the fishery at age 2 but are not fully recruited 
until age 4 (Table 2). With this partial recruitment 
vector, Fst is 0.519. The graph of λe against F (Fig. 1) 
indicates that if F is held at its 1994 value of about 
0.29, the population would be expected to increase at 
a rate of 6.35% per year. If F is reduced to 0, the stock 
would be expected to increase at a rate of 18.0% per 
year. The expected rate of increase when F is below 
Fst is particularly pertinent to cases where stock re-
building is desired because this analysis allows the de-

Table 4
Sustainable fishing mortality (Fst) and %MSP as a function 
of age at entry (tc) for Georges Bank haddock. 

tc Fst %MSP

1 0.236 27.20
2 0.309 27.20
3 0.465 27.20
Current 0.519 27.20
4 0.956 27.20
5 >2.0  —

Figure 1
Rate of population increase (lambda) in relation to instantaneous fishing 
mortality (F) for  a range of age at entry into the fishery. 
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termination of how rapidly the stock will 
be rebuilt under various levels of fishing 
mortality. 

Developing a Leslie matrix 
representation of harvesting: 
stochastic case

One of the major challenges facing fish-
ery managers is to determine appropriate 
reference points for fish populations that 
show variable recruitment. When one or 
more elements of the Leslie matrix vary 
in a stochastic fashion, no general closed-
form expressions for the growth rate of 
the population are available (Tuljapurkar, 
1989). Results of theoretical studies of sto-
chastic Leslie matrices are useful, how-
ever, in guiding the analysis and interpre-
tation of matrices with entries that vary 
over time. Two results summarized by 
Tuljapurkar (1989) that are particularly 
useful in this analysis are

1 The analog to lambda for deterministic matrices 
is the mean population growth rate, in contrast to 
the growth rate of the average population. This is 
equivalent to the mean rate of change in the loga-
rithm of population size (N).

2 The distribution of projected population size (N) over 
time tends towards a lognormal distribution when 
the dynamics are governed by a stochastic matrix.

From these results, maintenance fishing mortality can 
be defined as the fishing mortality that results in an 
average population growth rate of 0 (equivalent to 
λe=1). Because this measure is analogous to lambda, 
I will use the symbol λ for its representation but em-
phasize that computationally the measures for deter-
ministic and stochastic Leslie matrices differ. An im-
portant corollary of the above two results is

3 A population growing deterministically at the mean 
growth rate does not produce the mean of the pop-
ulation sizes produced in the stochastic represen-
tation. Nor does a deterministic matrix composed 
of the means of the stochastic matrices produce a 
population with the same dynamics as applying 
the stochastic matrices.

To illustrate these theoretical results, I performed a 
simulation of the Georges Bank haddock stock dy-
namics using a stochastic Leslie matrix. In this case, 
I focused on the effects of stochastic age-0 survival 
as represented by R/SSB. I performed this simulation 

by projecting a starting population forward in time, 
with the value for R/SSB for each year selected with 
equal probability from observed values from 1976 to 
1994. Five thousand replicates were simulated for a 
150-year period. 

Results of these simulations are in accord with the 
theoretical assertion that Nt is distributed lognor-
mally; for times greater than 110 years, the ln(Nt) 
did not differ significantly from a normal distribution 
at α=0.05. It is interesting to note that Nt is lognor-
mally distributed, even though the stochastic element 
(R/SSB) was not normally or lognormally distributed 
itself. The lognormal distribution of Nt arises from the 
fact that Nt is the result of the process of sequential 
multiplications of random elements (Aitchison and 
Brown, 1976). When the distribution of population 
size is plotted over time (Fig. 3), it is clear that the 
variance increases rapidly. When year-to-year popu-
lation growth rates (i.e. Nt+1/Nt) are computed for in-
dividual simulation results, the distribution of growth 
rates shows an initial transient response for the first 
5 years but thereafter settles into a stable distribution 
from year to year (Fig. 4). Because of the transient dy-
namics, I began the evaluation of long-term dynamics 
with year 10.

One of the critical theoretical results is that the 
growth rate of a population governed by stochastic 
rates tends towards a single value in the long run. 
This is what Tuljapurkar (1989) terms the “almost 
sure population growth rate.” When the growth rate 
is computed over progressively longer intervals, the 
distribution shows a convergence on nearly the same 

Figure 2
Relationship between rate of population increase (lambda) and percent 
maximum spawning potential (%MSP) for a range of age at entry.
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mean value (Table 5) with a decreasing variance (Fig. 
5). This result has both theoretical and pragmatic im-
plications. Of theoretical importance is the concept 
that although the variance of projected population 
abundance increases over time, the variance of the 
growth rates declines over time. Thus mean popu-
lation growth rate can be used in defining a main-
tenance fishing mortality rate. The practical conse-
quence of the above result is that at least two different 
strategies can be used to compute λ for a stochastic 
population. One strategy is to project the population 
for a long period of time (e.g. hundreds of years) to 
make a precise estimate of the long-term population 
growth rate. This strategy makes use of the fact that 
the variance of the long-term population growth de-
clines as the period of projection is lengthened. A prob-
lem with this approach, however, is that for projec-
tions over a long period of time, population abundance 
can become so large or small that it cannot be directly 
represented on a digital computer, causing a numeric 
overflow or underflow. A preferable strategy is to com-
pute λ for a large number of simulations over a shorter 

time period (e.g. 150 years). This method avoids the 
problem of numeric overflow and achieves precision in 
the estimate of mean λ by having a large number of 
simulations.

Based on the current partial recruitment vector to 
the fishery, a fishing mortality of 0.450 (Fst) would 
result in an average population growth rate of zero 
(Table 6). The fishing mortality that results in a zero 
growth rate for the mean population size was higher, 
at 0.517 (Table 6). Interestingly, this is nearly the 
same as Fst computed for the deterministic case by us-
ing the mean R/SSB. The estimate of Fmed with these 
same data is much lower than Fst— only 0.069 (Table 
6). When a deterministic Leslie matrix analysis was 
made with the corresponding median R/SSB, it re-
sulted in an estimate of Fst that was nearly the same 
as Fmed (Table 6). This finding illustrates the basic 
connection between these methods when they are op-
erating on the same inputs. As an additional compari-
son, I computed SSB/R as the ratio ΣSSB/ΣR instead 
of the mean (or median) of the individual year ratios. 
This method is based on sampling theory that sug-
gests that the ratio of the sums is a less biased estima-

Figure 3
Distribution of population sizes to year 10 for a stochastic 
projection of the Georges Bank haddock stock.  The distribu-
tion of population sizes for each time interval is based on 
5000 simulations.  Arrows indicate mean for each year.

Figure 4
Distribution of annual population growth rates (lambda) to 
year 10 for a stochastic projection of the Georges Bank  Had-
dock stock.  The distribution of  growth rates  for each time 
interval is based on 5000 simulations. 
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tor of the “true” ratio than is the mean of the individ-
ual ratios (e.g. Cochran, 1977). The value for SSB/R 
obtained with this method was 2.685, and when used in 
place of the median SSB/R in the Fmed calculations, re-
sulted in an estimated reference point of 0.449—essen-
tially the same as in the stochastic simulation where 
the mean population growth rate was zero (Table 6). 

Discussion

The primary purpose of this paper was to demonstrate 
how the Leslie matrix can be used to compute a refer-
ence point for harvested populations and to contrast 
this method with the SSB/R method currently in use. 
One of the major findings was that the SSB/R method 
and the Leslie matrix approach produce similar es-
timates of sustainable fishing mortality when they 
are based on the same inputs. This is not surprising 
given the similarity between reproductive value, on 
which the Leslie matrix is based, and lifetime spawn-

ing stock biomass per recruit which the SSB/R ap-
proach uses. 

Although the two methods produce similar esti-
mates of sustainable fishing mortality, the Leslie ma-
trix approach is preferable because of the additional 
direct information it provides regarding the popula-
tion response to fishing at levels different from the ref-
erence point. Furthermore, when population growth 
rate is different from zero, equal levels of SSB/R do 
not result in the same population growth rate for differ-
ent partial recruitment vectors. These differences are 
small, however, in relation to changes in population 
growth rate owing to changes in fishing mortality. 

Given the various approaches illustrated (e.g. de-
terministic vs. stochastic), the basic question is what 
method to use. On the basis of theoretical advances 
in the population dynamics literature and results pre-
sented here, I recommend the use of a stochastic anal-
ysis where the mean of the population growth rates 
is used as the “best” measure of growth for harvested 
populations. A stochastic analysis is preferable be-

Table 5
Mean and coefficient of variation (CV) of 5000 simulations of 
long run population growth rate for Georges Bank Haddock 
without fishing. 

Time interval Mean CV

Year 10–20 0.1552 37.02
Year 10–30 0.1555 23.28
Year 10–40 0.1558 18.03
Year 10–50 0.1559 15.23
Year 10–60 0.1559 13.34
Year 10–70 0.1560 12.07
Year 10–150 0.1563  7.60

Table 6
Comparison of Fst with deterministic analyses, stochastic 
analyses, and with %MSP calculations.

Type of simulation Recruitment input Fst

Deterministic Mean R/SSB 0.519

Deterministic Median R/SSB 0.070

Stochastic 
 (mean of rates) Uniform probability 0.450

Stochastic 
 (mean of populations) Uniform probability 0.517

%MSP Mean SSB/R 0.519

%MSP Median SSB/R 0.069

%MSP SSB/R= ΣSSB/ΣR 0.449

Figure 5
Distribution of population growth rates over various time 
scales for a stochastic projection of the Georges Bank had-
dock stock.  The distribution of growth rates for each time 
interval is based on 5000 simulations.  Arrows indicate mean 
for each year.
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cause it can fully represent the information contained 
in the distribution of observed R/SSB values. Also, a 
stochastic simulation can be used to provide a mea-
sure of the uncertainty associated with estimates of 
the biological reference point. The use of the mean 
population growth rates instead of the mean of the 
population sizes is justified on theoretical grounds 
(Tuljapurkar, 1989). As shown in Table 6, use of the 
mean R/SSB in a deterministic analysis or the rate 
of growth of the mean population size in a stochastic 
simulation tends to result in higher estimates of sus-
tainable fishing mortality (or, alternatively, a higher 
estimate of population growth rate for a given fishing 
mortality rate) than does the stochastic simulation 
where the mean of population growth rates are used 
as the output. I feel that the reason for this difference 
hinges on the distinction between projections and fore-
casts (Caswell, 1989) . If we view the long-term simu-
lation results as forecasts, this implies that we could 
use the distribution of population size (and the mean 
of the distribution) as the best estimate of the future 
state of the population. In these simulations, however, 
the mean population size is strongly influenced by the 
very high values that occur in the right-hand tail of 
the lognormal distribution. These estimates are far 
above what has ever been observed for this stock, and 
are probably not biologically realistic. As such, they 
should not be treated as true forecasts of the future 
population. In contrast, if we view the analysis as a 
projection, the goal is not to forecast future popula-
tion size but rather to use the results to determine the 
population growth rate that is represented by the cur-
rent Leslie matrix. By knowing the current population 
growth rate, it is possible to find the fishing mortality 
rate that maintains an expected value for population 
growth of zero, which would result in a statistically 
stationary population.

In a stochastic setting, the entire distribution of 
R/SSB ratios is used to portray the reproductive suc-
cess for the stock. When a deterministic analysis is de-
sired, however, it is necessary to choose among several 
possible measures of central tendency for the R/SSB 
ratio. Sissenwine and Shepherd (1987) advocated the 
use of the median R/SSB ratio as a way of robustly 
portraying the reproductive success of a stock. Their 
rationale was that the frequency of relatively poorer 
recruitment is balanced by years of better recruitment 
when the median R/SSB is used. Table 6 illustrates, 
however, that using the median of the observed R/SSB 
ratios can result in estimates of sustainable fishing 
mortality that are substantially different from the sto-
chastic simulations, which are arguably the best to 
represent the population’s dynamics. The use of the 
mean of the observed R/SSB ratio as the measure 
of central tendency can likewise result in estimates 

of sustainable fishing mortality that differ from the 
standard set by stochastic simulations. The primary 
reason for this difference is that use of a mean of 
the observed ratios is biased high in relation to the 
preferred estimator of the ratio (in this case the sum 
of recruitment over the sum of spawning stock bio-
mass; Cochran, 1977). As such, the use of the mean 
of the observed R/SSB values can also be inaccurate. 
Among the measures presented here, the estimator 
Σrecruitment/Σspawning stock biomass should be used 
as the measure of central tendency for the R/SSB ratio 
in deterministic analyses. The use of this measure re-
sults in point estimates of sustainable fishing mortal-
ity that are essentially the same as a full stochastic 
analysis.

Although the Leslie matrix is a useful tool to por-
tray the dynamics of harvested populations and to de-
termine appropriate reference points, several issues 
arise that are of considerable practical importance. 
As alluded to earlier, a significant challenge is how 
to determine what is an appropriate distribution for 
the R/SSB ratio. Because of the variability in R/SSB 
over time and the occurrence of occasional large year 
classes, it is very difficult to determine what time 
frame is representative of the present. Although the 
answer to this question is beyond the scope of this pa-
per, I feel that the best approach is to plot the mean 
R/SSB ratio over progressively longer time periods 
back from the present to determine if there are any 
temporal trends or epochs in the data set. The analyst 
should then use his or her judgment based on other 
biological information over time (such as stock size, 
mean weight per individual at age, and maturation 
schedule) to determine an appropriate period to use as 
the basis for stochastic simulations. It is important to 
emphasize that the dilemma of choosing a representa-
tive time period is not unique to analyses in which the 
Leslie matrix is used, and the same problem arises for 
computing any biological reference point. 

In addition to the difficulty of determining what is a 
representative time period for the present population, 
a fundamental question is how to represent the dy-
namics of populations with a density-dependent stock-
recruitment relationship. In principle, this can be ap-
proached by altering the R/SSB ratio as a function of 
stock size (e.g. Quinn and Szarzi, 1993). Although I 
agree with Quinn and Szarzi’s (1993) approach, the 
challenge of accurately specifying the distribution of 
R/SSB ratios at different stock sizes is even greater 
than specifying the current distribution.

As a final comment, biological reference points for 
fish populations are not necessarily targets for fish-
ery management (Mace, 1994), nor are they inviolate 
boundaries that may not be crossed. Rather, they are 
most useful as a means of comparing the consequences 
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of different choices among fishery management op-
tions. For example, it is appropriate to allow fishing 
mortality to exceed the biological reference point if the 
goal is to reduce an overly abundant fish stock. Like-
wise, they can be useful in projecting the likely growth 
of a population under more restrictive fishery man-
agement measures. In the end, however, they may be 
most useful as a reminder and a warning that there 
are limits to the productive capacity of fish population 
and that if we consistently exceed their limits, popu-
lation declines are almost certain to occur (Francis, 
1997; Myers, 1997).
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